StratoScript is a simple yet powerful scripting language developed by Digitalis Education Solutions, Inc. for automating select planetarium simulation software. Anyone with some astronomy knowledge can be successful with StratoScript scripting. Use it to alleviate tedious manual sequences or provide special effects with image manipulation, audio, video playback (where supported), and more.

This document outlines StratoScript commands supported by: **Nightshade NG 20.9.1**

StratoScript features have been enhanced with Nightshade NG through the addition of new commands, new arguments, and the much greater capabilities of NG. Scripts designed for the older versions of Nightshade should mostly work with NG, except that a few features are not supported. See the notes below on a blue background and this summary page which is kept up to date:

http://NightshadeSoftware.org/projects/nightshade/wiki/StratoScript_in_NG

DOCUMENT LICENSE: Copyright 2005-2020, Digitalis Education Solutions, Inc. This document in whole may be freely copied, distributed, translated, and published, but it may not be modified in any other way without written permission. Nightshade, StratoScript, and Digitarium are trademarks of Digitalis Education Solutions, Inc. (http://DigitalisEducation.com)
The Basics (Don't Skip This!)

StratoScript files end in a "sts" extension and should be formatted in UTF-8 encoding (ASCII is acceptable as it is a subset of UTF-8).

Command format:

- Each command is a single line (terminated with a newline character). If you need a newline in an argument value you must use "\n".
- Each command consists of a command name followed by an optional list of arguments in the form of name/value pairs:

`COMMAND ARG_NAME1 ARG_VALUE1 ARG_NAME2 ARG_VALUE2 ...`

- Whitespace is used as a delimiter.
- Argument values requiring included whitespace must be enclosed in double quotes. If you want a double quote within a value you can precede it with a backslash.

```
"This is a value with spaces."
"What is a "blue moon"?"
```

- Commands and argument names are not case sensitive.
- Argument values are case sensitive.
- Argument pairs can be arranged in any order.
- When multiple arguments are required to perform a command, they must all be supplied at the same time (in the same single-line command).
- Comments start with a '#' character. Anything to the right of and including a '#' is ignored unless the '#' is preceded by a backslash.

```
# My script about the Sun
select object Earth # this is a comment and will be ignored
text name title action load string "Lesson \#1" alpha 1
```

- If an argument is not defined it will be ignored if possible. Otherwise it will default to zero if a number is required, or an empty string otherwise. Any different default values are documented below in the command argument descriptions.

Example Commands:

```
select object Jupiter
flag atmosphere on
date utc 1999-08-11T12:00:00
wait duration 2.5
moveto lat 45.7 lon -122 duration 5
landscape action load type spherical texture egarden.png
select nebula M31 pointer off
set home_planet "Solar System Observer"
```

Best practice is to use the "require" command as the first command in your script as this alerts Nightshade and users to the requirements for proper playback. For best results you should develop scripts using the same software version and projection mode intended for playback.

Please note that the Community version of Nightshade NG does not support fisheye projection mode. Also note that some features like video playback may not work on the Windows versions of Nightshade NG.
Format of this document:

command1
A description of what the command does will follow with some examples of using the command in an example box.

<table>
<thead>
<tr>
<th>command1 argument-1 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>command1 argument-2 "literal-value" argument-3 cat</td>
</tr>
</tbody>
</table>

argument-1

INTEGER
A description of what the argument value means follows each argument option. If an argument value is all caps on a black background like **INTEGER** it is a standard argument type, and should be substituted with an appropriate value of this type. Consult the “Standard Argument Types” below for definitions of standard types.

argument-2

literal-value
Argument values that are literal strings are lower case and are used exactly as listed or can be included in quotes.

Examples (note the box used for examples in this document):

<table>
<thead>
<tr>
<th>literal-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>"literal-value"</td>
</tr>
</tbody>
</table>

STRING
A standard argument value could be another option for argument-2.
In this example, the argument "argument-2" can have any string value desired, but "literal-value" would have a special meaning, which would have been described here.

argument-3

cat
dog
This example only allows two values, either “dog” or “cat” for argument-3.

Notes about current or future changes have this blue background.

argument-4

[INTEGER:] INTEGER
Optional items are in brackets. Here the first integer and colon group is optional before the required last integer. Examples:

| 5 |
| -5 |
| 6:3 |
| 207:-3 |
Standard Argument Types

Many arguments take standard types of arguments. These are standardized and defined in this section. If an argument value is ALL CAPS on a black background refer back to this section for its definition. The most fundamental types are listed first, followed by those that build upon the former, with each section in alphabetical order.

Fundamental Argument Types

DATE_TIME
A date and/or time specified in ISO8601 format: year-month-dayThour:minute:second
In StratoScript the date or time portion can be left off, in which case the 'T' separator is not required.

-200-03-22T13:33:00
59900-12-31T01:00:00
1918-11-11
20:30:0

DECLINATION
An angle in degree, minute, and second notation. The following examples are all equivalent.

-9d4m3.2s
-9:4:3.2
“-9 4 3.2”

DIRECTORY
A case sensitive directory (folder) relative to directory the running script is located in.

MyMedia
"jupiter directory"
moons/irregular/Mars

FILENAME
A valid filename which is case sensitive. If you need to specify a path to the file using folders, separate these with forward slashes (/). A path by default is relative to the directory the script is running from. If you want to reference a file higher up the filesystem tree, use “../” notation. Note that the required file type(s) vary by command.

Example filesystem structure:

show1/myscript.sts
show1/hamster.jpg
show1/photos/fido.png
media/cat.jpg
media/Dog.png
media/birds/parrot.mp4

Example command filename arguments usable in show1/myscript.sts with above filesystem:

hamster.jpg
photos/fido.png
../media/cat.jpg
../media/Dog.png
../media/birds/parrot.mp4

INTEGER
A whole number. Specific ranges are limited for some arguments, but the internal implementation is a C++ ‘integer’ with a range of at least –2,147,483,648 to 2,147,483,647.

| 5 |
| -123 |
| 0 |

LOCATE

Language locale code to use for translations. Not every locale is supported or has full translations.

| fr # French |
| es # Spanish |
| zh_HK # Chinese, Hong Kong |

ON_OFF

A value of "on" or "1" is on. Off is "off" or "0".

ON_OFF_TOGGLE

A value of "on" or "1" is on. Off is "off" or "0". "toggle" means turn off if currently on, or vice versa.

PATH

A path to a directory or folder containing files in the file system. The path should be relative to the calling script and use Unix style ‘/’ directory separators. See the **FILENAME** description for more details.

REAL

A real number. Specific ranges are limited for some arguments, but the internal implementation is a C++ ‘double’ with a range of at least 1.7E +/- 308 (15 digits).

| 1900 |
| 2.345 |
| -0.0004 |

RIGHT_ASCENSION

An angle in hour, minute, and second notation. The following examples are all equivalent.

| 12h5m4.5s |
| 12:05:4.5 |
| “12 5 4.5” |

STRING

A string of characters. If the string contains spaces it needs to be quoted. It is best to assume that strings are case sensitive (capitalization has to match). Default is an empty string.

"a string with spaces"

TIME_ZONE

Time zone name. See https://en.wikipedia.org/wiki/List_of_tz_database_time_zones for a list of generally usable time zone names. Actual supported time zones can vary with your operating system.

TRUE_FALSE

Value can be “true” or 1 to signify truth, and “false” or 0 for not true.

URL
Other Standard Argument Types

COORDINATE SYSTEM

A number of useful coordinate systems are defined for positioning media, such as images, on the celestial sphere. The following are the supported coordinate system names and descriptions.

- **dome** – Altitude is the angular distance from the horizon, positive above and negative below the horizon. Azimuth is the angular distance from the direction opposite the focal point azimuth direction in a counter-clockwise direction if you are facing the zenith of your dome. Dome coordinates are only affected by your focal point and do not move with heading, pitch, etc.

- **equatorial** – Right ascension (\(\text{ra}\)) and declination (\(\text{dec}\)) in equatorial coordinates based on the equinox of date.

- **galactic** – Right ascension (\(\text{ra}\)) and declination (\(\text{dec}\)) in galactic coordinates.

- **geocentric** – Latitude (\(\text{lat}\)) and longitude (\(\text{lon}\)) of the currently anchored body.

- **horizontal** – Altitude is the angular distance from the horizon, positive above and negative below the horizon. Azimuth is the angular distance from North along the horizon, positive in the North to East rotational direction (counter-clockwise if you are facing the local zenith).

- **j2000** – Right ascension (\(\text{ra}\)) and declination (\(\text{dec}\)) in J2000 equatorial coordinates.

- **viewport** – A 2D coordinate system overlayed on the screen with x (\(\text{xpos}\)) and y (\(\text{ypos}\)) coordinates. The center of the viewport is (0,0). X is positive to the right, Y is positive up. Note: In fisheye mode (Nightshade NG Professional and Basic editions only) the viewport is a square just containing a non-truncated fisheye projection circle. In NG the viewport is rotated so that the bottom of the viewport (down direction in the image) is aligned to the focal azimuth direction.

The following table lists the recommended position argument names for each coordinate system. Note that \(\text{xpos}\) and \(\text{ypos}\) are also supported for all systems but are not intuitive. All position arguments are **REAL** values, using degrees for any angles.

<table>
<thead>
<tr>
<th>coordinate_system</th>
<th>Argument A (xpos)</th>
<th>Argument B (ypos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>dome</td>
<td>altitude</td>
<td>azimuth</td>
</tr>
<tr>
<td>equatorial</td>
<td>(\text{dec})</td>
<td>(\text{ra})</td>
</tr>
<tr>
<td>galactic</td>
<td>(\text{dec})</td>
<td>(\text{ra})</td>
</tr>
<tr>
<td>geocentric</td>
<td>(\text{lat})</td>
<td>(\text{lon})</td>
</tr>
<tr>
<td>horizontal</td>
<td>altitude</td>
<td>azimuth</td>
</tr>
<tr>
<td>j2000</td>
<td>(\text{dec})</td>
<td>(\text{ra})</td>
</tr>
<tr>
<td>viewport</td>
<td>(\text{xpos})</td>
<td>(\text{ypos})</td>
</tr>
</tbody>
</table>
DEGREES
Angular degrees as a **REAL**. Note that these are true decimal degrees; do not confuse with other angle notations like **RIGHT_ASCENSION** or **DECLINATION**.

35
-540.23

FADER
A **REAL** number between 0 and 1, inclusive. Used to adjust a value between off (0) and fully on (1).

DISTANCE
A **REAL** combined with an optional supported unit of length (with no white space in between). Units are case insensitive. Default units are meters. Supported units are:

- m – meter
- km – kilometer
- AU – Astronomical Unit
- ly – light-year
- pc – parsec
- mly – mega light-year
- % - percentage of current distance

1au
10km
50%
30000

JULIAN_DATE
A **REAL** denoting an astronomical date in Julian days.

MARKUP_STRING
A **STRING** that allows newlines (as "\n" escape sequences) and also supports some formatting markup tags. The following markup tags can be used. Note that tags have a beginning and an ending tag as shown:

- ``bold``
- `<i>`italics`<i>`
- `<sup>`superscript`<sup>`
- `<sub>`subscript`<sub>`

You\nAre\nHere.
H₂\nE = MC²
This is my ``favorite`` star.

POSITIVE_REAL
A **REAL** real number greater than or equal to zero.

0.0
2.89

RELATIVE_SECONDS
A **REAL** preceded by a ‘+’ or ‘-’ and denoting a relative change in seconds (either real time or simulated time).

+8.34
RGB
A color defined by three **fader** values for red, green, and blue values in that order. Remember to include quotes if you put spaces between the numbers.

1, 0.5, 0
"0.33, 0.2, 0.9"

RGBA
A color defined by four **fader** values for red, green, blue, and alpha values in that order. Remember to include quotes if you put spaces between the numbers. An alpha value of 0 is fully transparent, and 1 is fully opaque.

1, 0.5, 0, 1
"0.33, 0.2, 0.9, 0.3"

RGBW
A color defined by four **fader** values for red, green, blue, and white values in that order. Remember to include quotes if you put spaces between the numbers. The white value allows the display of pastel colors on RGBW cove lighting systems.

SECONDS
A **positive real** denoting seconds of time (either real time or simulated time).

VECTOR3
A vector defined by three **real** values for x, y, and z in that order, separated by commas. Remember to include quotes if you use any spaces.

1, 0.5, 0
"-0.33, 5.2, 0.9"
Command Index

audio... 10
body... 11
clear... 14
color.. 15
configuration.. 16
cove_lights.. 16
date... 17
deselect.. 18
external_viewer.. 18
flag... 18
flyto... 21
image.. 22
landscape.. 24
layer... 25
meteors.. 27
moveto... 27
nebula.. 29
require... 30
script... 31
select.. 31
set... 32
sky_culture.. 36
soundscape.. 36
text... 37
timerate.. 39
video... 40
wait... 42
zoom.. 43
audio

Play and control audio tracks. Note that an audio track is stopped when the script that started it is stopped or finishes.

```
audio action play filename test.ogg name introduction
wait duration 20
```

action

- **clear**
 Drop all audio tracks loaded by a script.

- **drop**
 Halts playback and drops the track from memory. To resume an audio track after pausing it where you left off, you can call action "play" again, but be sure not to specify a filename or it will treat it as a new track.

- **pause**
 Pause currently playing script audio track.

- **play**
 Resume playing the existing script audio track if currently paused or begin playing a new track if a 'filename' argument is defined.

- **resume**
 Resume playing a paused audio track.

- **sync**
 Deprecated.

filename

- **FILENAME**
 Used with "play" action. Format support depends on your binary. Ogg Vorbis format is recommended for best compressed quality and backward compatibility. WAV format is also supported.

loop

- **ON_OFF**
 Used with "play" action.

name

- **STRING**
 Unique name to identify the audio track. Required if you want more than one track.

seek

- **SECONDS**
 Jump to a new position in the audio file. The brackets mean that this value can begin with an optional ‘+’ or ‘-’. If it does the seek will be made relative to the current position. Otherwise the position is measured from the beginning of the track. Can be used with the ‘play’ action to start somewhere besides the beginning of the track.
volume
Better results will be obtained by adjusting the volume in the actual audio track itself with an audio editor like the free Audacity project (http://audacity.sourceforge.net/).

decrement
Reduce audio volume by a step of 10% of maximum volume.

increment
Increase audio volume by a step of 10% of maximum volume.

FADER
0 is muted, 1 is maximum volume.

body
Load a solar system body such as an asteroid, comet, or artificial satellite. See the separate document “Adding a new celestial body in Nightshade” for a guide to orbital parameters and where to find them.

albedo
Reflectance of the body. 1.0 = White, 0.0 = Black.

action
clear
To remove all script added bodies at once use the "clear" action. This will not perform any action if your anchored body would be dropped.

drop
Remove an added solar system body with the "drop" action and "name" parameter. Only bodies loaded from scripts with no currently loaded satellites and that are not the current anchored body can be dropped.

load
Add a new solar system body defined by further arguments.

batch
begin
When loading a collection of new bodies, this tells Nightshade to begin processing a set of body commands in the most efficient way possible. Use this argument on the first command in the set.

drop
Finish processing a set of body commands and make them visible. Use this argument on the last command in the set.

close_orbit
Orbit visualizations may not look very jagged or misleading with, for example, hyperbolic orbits due to the large orbit and small sampling size of the orbit line. A false argument value will prevent the connecting line between the start and end of the visualization period from being connected with a line segment.

color
General color of the body (sets the halo color).
coord_func

 ell_orbit
 Elliptical type orbit.
 comet_orbit
 Comet type orbit.

halo
 TRUE_FALSE
 Is it bright enough to have a halo?

lighting
 TRUE_FALSE
 Is the body lit by the Sun?

lighting_model
 phong
 oren-nayar
 What lighting model to use for a body. For a spherical body, the default is 'oren-nayar' which is realistic for dusty bodies. The 'phong' option is the default for other models and is realistic for artificial bodies like spacecraft.

model
 spherical
 FILENAME
 Load a 3D model of the body. The model will be scaled to fit within a sphere sized to the radius argument. The default is a 'spherical' body, which will be scaled for the specified oblateness. Otherwise provide a filename for a 3D model if supported.

model_front
 VECTOR3
 If you are loading a model such as an artificial satellite that needs to stay aligned to its orbit, this vector defines which direction is toward the direction of forward motion. This will override other rotational parameters other than model_gravity. If you load your model in osgviewer (part of the OpenSceneGraph project) it starts up with x positive to the right, y positive into the screen, and z positive up. If the front of the model is to the right in osgviewer, the model_front vector would be “1,0,0”.

model_gravity
 VECTOR3
 If you are loading a model such as an artificial satellite that needs to stay aligned to the parent body, this vector defines which direction faces down towards the parent in model coordinates. This will override other rotational parameters other than model_front.

name
 STRING
 Required. The body will not be added if there is already a body with the same name.

oblateness
 REAL
 How ‘squashed’ is the body? A perfect sphere has an oblateness of zero.
orbit_AscendingNode
 DEGREES

orbit_ArgOfPericenter
 DEGREES
 Used to define elliptical or comet orbits.

orbit_color
 RGB
 Color of the orbit visualization line.

orbit_eccentricity
 REAL
 A circle has ratio of 0.0.

orbit_epoch
 REAL
 A Julian day used to define elliptical orbits.

orbit_inclination
 DEGREES

orbit_LongOfPericenter
 DEGREES
 Used to define elliptical orbits.

orbit_MeanAnomaly
 DEGREES
 Used to define elliptical orbits.

orbit_MeanLongitude
 DEGREES
 Used to define elliptical orbits.

orbit_PericenterDistance
 REAL
 A value with units of AU, used to define comet orbits.

orbit_period
 REAL
 Value in days used to define elliptical orbits.

orbit_SemiMajorAxis
 REAL
 Value in kilometers used to define elliptical orbits.

orbit_TimeAtPericenter
 JULIAN_DATE
 Used to define comet orbits.

orbit_visualization_period
 REAL
 How many days to use when drawing the orbit line for the body. The visualization is roughly centered on the body at it's current position.
parent

STRING
Parent body name in English. Required. Case sensitive.

radius

REAL
Radius of the body in kilometers.

rot_period

REAL
Body rotation period (not orbit period) in hours.

rot_periode

Synonym for "rot_period" which is preferred.

rot_pole_ra

DEGREES
RIGHT_ASCENSION
North pole right ascension at epoch.

rot_pole_de

Synonym for "rot_pole_dec" which is preferred.

rot_pole_dec

DECLINATION
DEGREES
North pole declination at epoch.

rot_rotation_offset

DEGREES
Offset of the prime meridian.

tex_map

FILENAME
Surface texture image.

tex_halo

FILENAME
Halo texture image.

clear

A shortcut to turn off lines and labels easily. If state is natural, ground and atmosphere will be turned on, otherwise these will be turned off.

clear state natural

state

natural
Turn off all labels, lines, and art. Turn planet, star, and nebula rendering on. Deselect any selected objects. Return to initial fov and viewing direction.
color

Specify the color of a drawn element. Note that the color command takes an argument also called color. Example which sets body orbits to bright yellow:

```stratoscript
color property planet_orbits color 1,1,0
```

The r (red), g (green), and b (blue) arguments are deprecated but still work. Use the color argument instead.

alpha

FADER

Opacity value. Defaults to 1 (opaque). Although all properties will accept an alpha value, not all properties will render with transparency. If you specify an alpha value in the `color` argument that will override any value for this `alpha` argument.

color

RGB

RGBA

If alpha is specified it overrides any separate `alpha` argument value.

property

- azimuthal_grid
- cardinal_points
- circumpolar_circle
- constellation_art
- constellation_boundaries
- constellation_lines
- constellation_names
- ecliptic_line
- equator_grid
 - Synonym for `equatorial_grid` which is preferred.
- equatorial_grid
- equator_line
- galactic_grid
- galaxy_points
- j2000_grid
- meridian_line
- nebula_circle
- nebula_names
- object_trails
 - Deprecated feature.
- planet_names
planet_orbits
precession_circle
satellite_orbits
tropic_lines
Color for orbits of bodies which do not orbit the Sun.

configuration

```plaintext
configuration action save name elvis-mars
configuration action load name factory
configuration action load
```

action

- **load**
 Reload the user's default settings.
- **save**
 Save your current settings.

name

- **default**
 This is the default value if not specified. Your default settings are loaded at startup and saved when you save your settings.
- **Factory**
 Your factory settings are failsafe settings from the factory.

STRING
You can also save settings by name and then load these later. Your name must only include alphanumeric or dash characters.

cove_lights

Control certain dome cove light systems. Only supported on Digitarium planetarium systems. The lights will change over the time specified by the `duration` argument to the color specified by the `color` argument. Alternately, use a preset setting.

```plaintext
cove_lights color 1,0,1,1 duration 15 # fade to pastel magenta
wait duration 15
```

The `r` (red), `g` (green), and `b` (blue), and `w` (white) arguments are deprecated but still work. Use the `color` argument instead.

color

- **RGB**
- **RGBW**
 The white value only has an effect on RGBW cove light systems.

duration

- **SECONDS**
 Number of seconds to transition to a new color given by the `r`, `g`, and/or `b` arguments. If absent, the duration defaults to zero.
preset

INTEGER
An integer denoting the desired preset to load. The **duration** argument will not affect preset loading.

date
Change the simulation date and/or time. To change the rate of time, see the **timerate** command.

```
date load current
date local 23:59:00 duration 20
wait duration 20
date sidereal 7
wait duration 1
date sidereal 7
```

duration

SECONDS
Number of real world seconds to transition to a new date given by other arguments. Default is zero for an immediate change.

jday

JULIAN_DATE
Set date to current Julian date.

load

current
Set date to current (real world) date.

preset
Set date to preset start up date.

local

DATE_TIME
Set time to a specified date and/or time using the current timezone. When no date is specified, the current simulation date is used. When no time is provided, the current simulation time is used.

relative

REAL
Change date and time by number of days (can be fractional).

sidereal

REAL
Change date and time by number of sidereal days (can be fractional) based on the planet or moon you are on.

utc

DATE_TIME
Set time to a specified date and time in the UTC timezone. When no date is specified, the current simulation date is used. When no time is provided, the current simulation time is used.
deselect
With no arguments, deselects current object selection, including any constellation selection. See select command.

```
deselect constellation ORI
```

constellation

CONSTELLATION_SHORT_NAME
With a 3 character constellation abbreviation specified, will only deselect that constellation. See: http://nightshadesoftware.org/projects/nightshade/wiki/Constellation_Abbreviations

external_viewer

Will still work, but deprecated. See 'video' command.

flag

Flags are simple on/off type settings.

```
flag cardinal_points on
flag atmosphere 0
```

atmosphere

ON_OFF_TOGGLE
Draw atmospheric effects.

azimuthal_grid

ON_OFF_TOGGLE
Draw azimuthal grid.

cardinal_points

ON_OFF_TOGGLE
Draw cardinal points.

clouds

ON_OFF_TOGGLE
Draw clouds when rendering planets such as Earth.

circumpolar_circle

ON_OFF_TOGGLE
Draw circumpolar circle showing limit of sky visibility.

constellation_art

ON_OFF_TOGGLE
Draw constellation artwork.

constellation_boundaries

ON_OFF_TOGGLE
Draw constellation boundaries.

constellation_drawing

See synonym 'constellation_lines'
constellation_lines
 ON_OFF_TOGGLE
 Draw constellation line drawings.

constellation_names
 ON_OFF_TOGGLE
 Draw constellation labels.

constellation_pick
 ON_OFF_TOGGLE
 Select constellation pick mode (whether to only draw selected constellations).

ecliptic_line
 ON_OFF_TOGGLE
 Draw ecliptic line.

equator_line
 ON_OFF_TOGGLE
 Draw equator line.

equatorial_grid
 ON_OFF_TOGGLE
 Draw equatorial grid.

galactic_grid
 ON_OFF_TOGGLE
 Draw galactic grid.

galaxy_points
 ON_OFF_TOGGLE
 Draw SDSS galactic point data.

j2000_grid
 ON_OFF_TOGGLE

landscape
 ON_OFF_TOGGLE
 Draw the landscape.

light_travel_time
 ON_OFF_TOGGLE
 Whether to correct for light travel time when rendering planets and moons. For performance reasons this is a close approximation.

manual_zoom
 ON_OFF_TOGGLE
 Select manual zoom mode.

media_captions
 ON_OFF_TOGGLE
 Draw text captions during audio or video playback if available.
meridian_line

ON_OFF_TOGGLE

Draw the meridian line.

milky_way

ON_OFF_TOGGLE

Draw the Milky Way.

Not currently supported but can use “set milky_way_intensity 0”

moon_scaled

ON_OFF_TOGGLE

Draw the moon scaled. See also set moon_scale to set the size.

nebula_names

ON_OFF_TOGGLE

Draw nebula labels.

object_trails

Deprecated. See time_lapse flag.

planets

ON_OFF_TOGGLE

Draw planets and moons.

Not currently supported

planet_names

ON_OFF_TOGGLE

Draw planet labels.

planet_orbits

ON_OFF_TOGGLE

Draw planet orbits.

precession_circle

ON_OFF_TOGGLE

Draw Earth precession circle.

script_gui_debug

ON_OFF_TOGGLE

If on, will print script errors to the screen. Good for debugging.

shadow_volumes

ON_OFF_TOGGLE

Show volumes to visualize body shadows.

show_framerate

ON_OFF_TOGGLE

Shows the current rendering framerate next to the date for debugging purposes.

show_tui_datetime

ON_OFF_TOGGLE

Draw the date and time.
show_tui_short_obj_info

ON_OFF_TOGGLE
Draw information about the selected object.

star_names

ON_OFF_TOGGLE
Draw star labels.

star_twinkle

ON_OFF_TOGGLE
Draw stars twinkling.

stars

ON_OFF_TOGGLE
Draw stars.

time_lapse

ON_OFF_TOGGLE
Make a time lapse exposure of non-synthetic scene elements. Illustrate planetary trails, star trails, analemma, etc.

track_object

ON_OFF_TOGGLE
Center view on currently selected object.

translate_constellation_names

ON_OFF_TOGGLE
Whether to translate constellation names into the current sky locale. If you do not want to show translated constellation labels, set to false. If false, for example, you will see Latin names for all Western sky culture constellations.

tropic_lines

ON_OFF_TOGGLE
Draw tropic line.

flyto

Fly straight to the currently selected object or an object of your choice. If you need to be at a particular latitude/longitude when you arrive, see the moveto command in addition or instead.

flyto object Mars alt 10km duration 20
wait duration 20

alt

DISTANCE
Altitude desired above the object at final destination.

anchor

follow
geosync
With an anchor of 'geosync' you will stay over the same latitude and longitude on your anchored body as time passes. This is the default type of anchor for this command. With an anchor of
‘follow’ you will follow the anchored body but keep your orientation relative to the stars so you can view the body rotate on its axis.

duration

SECONDS
How long to take to effect this change. Defaults to 0.

object

STRING
Name of an object to fly to. Defaults to currently selected object, or if none, the currently anchored object.

As a side effect the object flown to becomes selected.

image

Display images. Images are loaded as transparent by default, so be sure to set the alpha value to be visible. Note that an image is dropped when the script is stopped or finishes.

```plaintext
image action load name abc filename abc.jpg alpha 1 \ coordinate_system dome altitude 45 azimuth 0 scale 35 wait duration 20
```

action

- **clear**
 Drop all images loaded by a script. Can be filtered with the **persist** argument.
- **drop**
 Drop images when no longer needed to improve performance.
- **load**
 Load a new image to display.

alpha

FADER
0 is transparent (default), 1 is opaque. Note that images are drawn in the order they were loaded.

altitude

DEGREES
For positioning the center of the image in horizontal/dome coordinates. Zero is at the horizon, 90 is at the zenith.

azimuth

DEGREES
For positioning the center of the image in horizontal/dome coordinates. Please see page 6.

clone

ON_OFF
Whether to clone an image on opposite sides of the dome when using dome coordinates.

coordinate_system

COORDINATE_SYSTEM
What coordinate system to use when positioning the image. This can not be changed later.
dec
 DECLINATION
 DEGREES
 Declination of the image center for "equatorial" and "j2000" coordinate systems.

duration
 SECONDS
 How long to take to complete the command.

filename
 FILENAME
 Path must be relative to script. For the greatest backward compatibility or if you want
 transparency then PNG format is recommended.

lat
 DEGREES
 Latitude of the image center for "geocentric" coordinate system.

lon
 DEGREES
 Longitude of the image center for "geocentric" coordinate system.

persist
 ON_OFF
 If on, the image will persist even after the script ends. You can continue to control the image
 through the image command in other scripts by referencing name.

name
 STRING
 Unique name used to refer to the image in later calls to manipulate the image.

ra
 DEGREES
 RIGHT_ASCENSION
 Right ascension of the image center for "equatorial" and "j2000" coordinate systems.

rotation
 DEGREES
 Absolute rotation about the center of the image, positive is clockwise when looking towards the
 center of the image.

scale
 fill
 In viewport coordinates, the image is scaled to completely cover the viewport while preserving
 the image aspect ratio. This means some of the image may be outside of the viewport. This
 argument is invalid for any other coordinate system.

 REAL
 How large to draw the image. In viewport coordinates, at 1 the image is scaled to fit maximized
 in the viewport without extending beyond the viewport edges. In other coordinate systems, this
 defines the maximum angular dimension of the image in degrees.
xpos

REAL

Position of the image center in "viewport" coordinates. In perspective projection mode the viewport is usually the screen. In fisheye mode (Nightshade Professional only) the viewport is a square just containing the fisheye projection circle.

Zero is center of viewport, 1 is the right edge of the viewport, -1 is the left edge of the viewport.

ypos

REAL

Position of the image center in "viewport" coordinates. In perspective projection mode the viewport is usually the screen. In fisheye mode (Nightshade Professional only) the viewport is a square just containing the fisheye projection circle.

Zero is center of viewport, 1 is the top edge of the viewport, -1 is the bottom edge of the viewport.

landscape

A landscape surrounds the viewer and is typically a photographic panorama with the sky areas transparent for sky viewing. Landscapes only draw if the user is "landed" on a body.

```plaintext
landscape action load name London body Earth night_texture \ night.png texture day.png top_altitude 20 type spherical
```

action

`load`

Load a landscape.

fov

DEGREES

For fisheye type landscapes, sets the field of view of the texture, typically 180°. Default is 180°.

base_altitude

DEGREES

For spherical type landscapes, sets the altitude angle of the bottom of the texture. Default is -90°.

body

BODY_NAME (STRING)

If defined, the landscape will only display when on the named body (for example, 'Mars').

night_texture

FILENAME

This image will fade in overlaying the normal texture as it gets dark. This image is optional. The file name needs to be specified in full including the path relative to the script. Must be PNG format with the sky transparent.

mipmap

ON_OFF

Whether to use mipmapping. If you have high contrast texture details, your landscape may look better with this option. Default is off.

rotate_z

DEGREES
Rotate the landscape around the z (up) axis. Default is 0° with the spherical landscape seam to the East and a fisheye oriented with the texture top at North.

texture

IMAGE_FILENAME
The standard landscape image. The file name needs to be specified in full including the path relative to the script. Must be PNG format with the sky transparent.

top_altitude

DEGREES
For spherical type landscapes, sets the altitude angle of the top of the texture. Default is 90°.

type

fisheye

spherical

The "fisheye" type is best is you have only one fisheye image with the zenith in the center. The "spherical" type is recommended for it's simplicity and also can support cylindrical landscapes using base_altitude and top_altitude parameters.

The "old_style" type has been deprecated.

layer

Add data layers such as satellite imagery, topographic height fields, or false color data visualization layers to reference frames (currently select bodies, but soon the sky itself). Data layers can cover the entire object or just be an inset of detail for a particular area. Data layers are implemented through the osgEarth library, so documentation for this library may be helpful for more advanced uses. Layers stay loaded until explicitly dropped or you restart Nightshade. A simple example:

```plaintext
layer name sea reference_frame Earth action load url imagery/sea.TIFF
wait duration 30
# Fade out over 3 seconds
layer name sea reference_frame Earth alpha 0 duration 3
wait duration 4
layer name sea reference_frame Earth action drop
```

action

clear

Drop all user loaded layers. Can also specify **reference_frame** to limit to layers on that object.

load

Load a new layer to display.

drop

Drop a layer when no longer needed to improve performance.

alpha

FADER
0 is transparent (default), 1 is opaque. Note that layers are drawn in the z_order defined, defaulting to newer layers over older layers.

duration

SECONDS
How long to take to complete the command.
lighting

ON_OFF
If lighting is on (default) then a body is shadowed normally. When off, the entire object is lit for better visibility.

max_level

INTEGER
Stop drawing the layer after this level of detail is reached. Level 0 is the least detailed with the level number increasing with detail.

min_level

INTEGER
Start drawing the layer when this level of detail is reached. Level 0 is the least detailed with the level number increasing with detail.

name

STRING
Unique name used to refer to the layer in later calls to manipulate the layer.

reference_frame

- Mars
- Mercury
- Moon
- Earth
- Europa
- Sky
Name of the reference frame to load the layer into.

type

- **heightfield**
- **image**
Type of data layer. The default type is image. A heightfield is used for topography.

url

URL
This is the location of the data layer file or network resource. File paths are relative to the script itself.

xmax

DEGREES
If using an inset layer this defines the maximum X extent of the layer in degrees of longitude.

xmin

DEGREES
If using an inset layer this defines the minimum X extent of the layer in degrees of longitude.

ymax

DEGREES
If using an inset layer this defines the maximum Y extent of the layer in degrees of latitude.
ymin

DEGREES
If using an inset layer this defines the minimum Y extent of the layer in degrees of latitude.

z_order

INTEGER
Data layers stack on top of each other and the z_order defines this order. The z_order increases from the lowest layer. By default loading a layer places it on top with the highest z_order.

meteors

meteors zhr 10000 ra 30 dec 110 velocity 15

action

reset
Reset the radiant location to the apex of the Earth's way in space and the background meteor rate.

dec

DECLINATION
DEGREES
Declination of the radiant center in "j2000" coordinate system.

ra

DEGREES
RIGHT_ASCENSION
Right ascension of the radiant center in "j2000" coordinate system.

velocity

default

REAL
Speed of the meteors relative to the Earth in meters per second.

zhr
default

REAL
Zenith hourly rate in meteors per hour.

moveto

Move to another location on the same or a different body. Change your landed state. Latitude, longitude, pitch, heading, and altitude all are adjustable independently. If you want to fly directly in a straight line to another body, see the flyto command.

moveto lat 47.123 lon -122.345 alt 12km duration 30
wait duration 30

Currently the different dimensions can not be updated on overlapping moveto commands. For example, if one moveto starts while another is still running, the first will be interrupted by the second moveto command.
acceleration

FADER
Adjust the acceleration curve of the moveto altitude/distance animation. The value 0 produces linear motion.

alt

default

DISTANCE
Altitude or distance above the surface of the destination object. Value of "default" will reload saved value from configuration file.

duration

default

SECONDS
How long to take to effect this change. Value of "default" will use the value from your configuration file for auto_move_duration.

heading

default

DEGREES
Heading relative to North. Positive to the East. Value of "default" will reload saved value from configuration file.

This is not backward compatible with Nightshade Legacy **moveto heading** which was relative to screen up direction.

land

default

ON_OFF_TOGGLE
Whether to be landed on the anchored body at the end of the movement. Altitude must be relatively low for land to be able to take effect. Value of "default" will reload value from configuration file. When you are landed photographic landscapes can draw if enabled and terrain will not be visible.

lat

default

DEGREES
Latitude. South is negative. Value of "default" will reload value from configuration file.

lon

default

DEGREES
Longitude. West is negative. Value of "default" will reload value from configuration file.

look_at

ON_OFF
If on, you will look at the anchored object over a duration of ¼ your total moveto duration.

object

default

STRING
You can change your anchored body as part of a moveto. Value of "default" will reload value from configuration file.

pitch

- **default**

 DEGREES

 Pitch. Positive up from the horizon. Value of "default" will reload value from configuration file.

roll

- **default**

 DEGREES

 Roll. At zero roll the horizon is level, with positive rotation of the horizon in the counter-clockwise direction about the focal point. Value of "default" will reload value from configuration file. Warning: roll and heading are conflated when tracking a body, which can lead to unpredictable results.

nebula

Not yet implemented.

action

- **load**

 Load a new nebula to supplement or replace a standard nebula image.

- **drop**

 Drop a script added nebula (use the name parameter).

- **clear**

 Clear all script added nebulae.

angular_size

- **REAL**

 Image angular size in arc minutes.

credit

- **STRING**

 Credit for the photographer who has provided usage permission.

de

- **Synonym for "dec" which is preferred.**

dec

- **DECLINATION**

 DEGREES

 Declination.

distance

- **REAL**

 Distance to the nebula from the Sun in light years.

filename

- **FILENAME**

 Texture image.
magnitude

REAL
Apparent visual magnitude of the nebula.

name

STRING
Name of an existing or new nebulae.

ra

DEGREES
RIGHT_ASCENSION
Right ascension.

rotation

DEGREES
Rotation of the image texture around it's center.

texture_luminance_adjust

REAL
Allows adjustment of the texture brightness. Default is 1 (no adjustment).

require

This command is highly recommended to be the first line of every script you create. It identifies what is required for faithful playback of the script. This helps users understand what scripts are compatible with their software version and also affects some StratoScript behaviors for backward compatibility. In the future warnings may be displayed for incompatible scripts.

```
require projection_type fisheye version 15.1.1 release professional
```

projection_type

perspective
fisheye
Identify what projection type is required, if this matters.

release

basic
community
professional
Identify what software release is required, if this matters. The biggest potential issue is that Nightshade Basic is limited to travel within the solar system.

version

INTEGER. INTEGER. INTEGER
Use to define what minimum version of Nightshade is required. If no version is supplied, a script will be assumed to be written for version 11.12.1 (Nightshade Legacy), meaning that you will get some deprecated behavior such as no easing (speed ramp up and down at start and end of motion) on moveto animations.
Pause script until user hits play
script action pause
Exit this script and play a second script
script action play filename second.sts

action

end
See 'stop'. This is not required at the end of a script, but is useful if you want to quickly end a script in the middle without deleting the rest of the file.

play
Start playing a new script defined by the "filename" argument. The original script will terminate.

pause
Pause the current script.

stop
Stop playing the current script.

filename

FILENAME
Specify a script file.

select
If no arguments are supplied, deselects current object but leaves constellation selections alone. See "deselect" command.

select constellation TAU
select object Mars pointer off

constellation

CONSTELLATION_SHORT_NAME
Three character abbreviation. For built in sky cultures see:
http://nightshadesoftware.org/projects/nightshade/wiki/Constellation_Abbreviations

hp

INTEGER
Select a star by its Hipparcos star catalog number.

nebula

STRING
Valid names begin with catalog identifiers M, NGC, or IC.

object

home_planet
default

STRING
English name of a currently loaded body or "home_planet" to select the body you are currently anchored to. To select your saved home body use "default".
planet

Synonym for "object" which is preferred.

pointer

ON OFF

Whether to draw the highlighting pointer around the selected object. Default is on.

star_only

ON OFF

When selecting a star this is OFF by default, meaning that if the star is in a constellation line drawing for the current sky culture, that constellation will also be selected.

set

```sh
# Shrink labels
set label_scale 0.75
```

anchor

follow

geosync

With an anchor of 'geosync' you will stay over the same latitude and longitude on your anchored body as time passes. This is the default type of anchor. With an anchor of 'follow' you will follow the anchored body but keep your orientation relative to the stars so you can view the body rotate on its axis.

atmosphere_fade_duration

SECONDS

How long it should take to fade the atmosphere when turning on or off.

atmosphere_rendering_multiplier

REAL

Increase the rendered brightness of the atmosphere. Default is 1.

atmosphere_sun_bloom

REAL

Adjust the intensity of the Sun bloom in the atmosphere.

auto_move_duration

SECONDS

Used for auto zoom feature.

constellation_art_fade_duration

SECONDS

constellation_art_intensity

FADER

Works, but deprecated. Use "color property constellation_art alpha FADER" instead.

duration

default

SECONDS
Currently only used for setting a duration for a heading or home_planet change (see below). Will use user's default duration settings if "default" is used. If not duration is provided, change is immediate.

NG should eventually support duration argument for all fadable setting changes.

focal_alt

```
DEGREES
```

For use in a planetarium, this defines the altitude angle of the focal point above the dome springline. The focal point is where a tracked object will go. A user will already have this set correctly for their theater so changing this in a script you intend to share is discouraged.

focal_azi

```
DEGREES
```

For use in a planetarium, this defines the azimuth angle of the focal point as measured from the up direction on your video source. The focal point is where a tracked object will go. A user will already have this set correctly for their theater so changing this in a script you intend to share is discouraged.

label_scale

```
REAL
```

Affects body, star, and constellation labels. Range is 0.25 to 2. Default is 1.

landscape_name

```
beach
forest
generic
hogerielien
hurricane
jupiter
mars
moon
mountain
neptune
saturn
uranus
```

Set the built-in landscape to use. A landscape specific to Earth, for example, will only draw if you are landed on the Earth. If you land on a new body, a landscape for that body will try to be loaded if the current one is not suitable. For example, an Earth landscape will switch to a Mars landscape if you fly to and land on Mars. To load a custom landscape, see the `landscape` command.

light_pollution_limiting_magnitude

```
REAL
```

Set naked eye limiting magnitude due to light pollution (light_pollution_luminance is now deprecated)

line_width

```
REAL
```
Pixel line width, can be fractional.

max_mag_planet_name

REAL

Only label and show orbit lines for bodies brighter than this magnitude.

max_mag_star_name

REAL

Only label stars brighter than this magnitude.

milky_way_intensity

REAL

1 is the default

milky_way_texture

default

FILENAME

Replace the milky way spherical texture with your own image. Use "set milky_way_texture default" to return to the default texture. Add an argument "coordinate_system" to change the image projection -- argument values can be "j2000" (default) or "geocentric". Not currently implemented.

moon_scale

REAL

1 is real size. See flag moon_scaled to enable/disable.

heading

DEGREES

0 is default, otherwise you can rotate the sky simulation around the zenith. Duration argument supported, see above.

home_planet

STRING

Change viewing location, case sensitive, English name for the body.

sky_culture

arab
aymara
aztec
belarusian
boorong
chinese
dakota
egyptian
hindu
inca
inuit
inuit-color
kamilaroi
korean
lakota
lokono
macedonian
maori
mongolian
navajo
nazca
norse
ojibwe
polynesian
romanian
sami
sardinian
siberian
tongan
tukano
tupi
western
western-color
western-hevelius
western-mod
western-modest
Change to a different sky culture, which includes constellation data and star names.

sky_locale
 LOCALE
 What locale to use to translate your sky labels.

star_limiting_mag
 MAGNITUDE
 Default is 6.5. Simply does not draw stars dimmer than this value at a full sky view. Might be removed in future releases.

star_twinkle_amount
 FADER
 0 is no twinkling and 1 is deep twinkling. The amount sets how much the star can dip in brightness at each twinkle sampling.

time_zone
 TIME_ZONE
Set the time zone used for your time display.

```plaintext
set time_zone America/Louisville
set time_zone Australia/Lord_Howe
```

sky_culture

```plaintext
sky_culture action load path my_culture
```

action

load

Load a new sky culture, which can include constellation lines, constellation art, constellation boundaries, and star names. This data is loaded into memory and will be replaced if another sky culture is selected or loaded.

path

```plaintext
PATH
```

The directory should contain all the files necessary to define a sky culture. See http://nightshadesoftware.org/projects/nightshade/wiki/Sky_culture for details.

soundscape

Digitarium NG Professional systems support adaptive sound tracks that react to where you are in space. It is also possible to create your own soundscapes, but this needs to be documented.

```plaintext
soundscape action play filename /media/Internal/sonic.defs volume 0.5
```

action

drop

Halt soundscape playback and unload the soundscape.

pause

Pause playback of soundscape.

play

Continue playing a paused soundscape or if 'filename' is defined, start a new soundscape.

resume

Continue playing a paused soundscape.

filename

```plaintext
FILENAME
```

OAML definition file for the soundscape.

This currently has to be an absolute path, but will be fixed to allow relative paths.

volume

```plaintext
FADER
```

Adjust the soundscape playback volume. 0 is muted, 1 is maximum volume.
text

Draw a string of text on screen. Only the position, rotation, and alpha can be changed once loaded.

```
| text action load name title string “My Show” font_size 15 \ coordinate_system dome altitude 30 azimuth 180 r 1 |
| text name title alpha 1 duration 5 |
| wait duration 5 |
```

This is an experimental feature and subject to revisions.

The r (red), g (green), and b (blue) arguments are deprecated but still work. Use the color argument instead.

action

```
clear
Drop all text loaded by a script. Can be filtered with the persist argument.
drop
Drop text when no longer needed to improve performance.
load
Load a new text to display.
```

alpha

```
FADER
0 is transparent (default), 1 is opaque. Note that texts are drawn in the order they were loaded.
If alpha is specified using the color argument, that overrides any alpha argument value here.
```

altitude

```
DEGREES
For positioning the center of the text in horizontal/dome coordinates. Zero is at the horizon, 90 is at the zenith.
```

azimuth

```
DEGREES
For positioning the center of the text in horizontal/dome coordinates. Please see page 6.
```

color

```
RGB
RGBA
If alpha is specified it overrides any separate alpha argument value.
```

coordinate_system

```
COORDINATE_SYSTEM
What coordinate system to use when positioning the image. This can not be changed later.
```

dec

```
DECLINATIN
DEGREES
Declination of the text center for "equatorial" and "j2000" coordinate systems.
```

duration

```
SECONDS
```
How long to take to complete the command.

face
 sans
 serif
font_size
 DEGREES
 Approximate font height in degrees. May only be set at load time and may not exceed 45 degrees.

h_align
 left
 center
 right
 Horizontally align text relative to your desired position.

lat
 DEGREES
 Latitude of the image center for "geocentric" coordinate system.

lon
 DEGREES
 Longitude of the image center for "geocentric" coordinate system.

name
 STRING
 Unique name used to refer to the text in later calls to manipulate it.

ra
 DEGREES
 RIGHT_ASCENSION
 Right ascension of the text center for "equatorial" and "j2000" coordinate systems.

rotation
 DEGREES
 Absolute rotation about the center of the text, positive is clockwise when looking towards the center of the text.

string
 MARKUP_STRING
 Text to draw onscreen.

xpos
 REAL
 Position of the text center in "viewport" coordinates. In perspective projection mode the viewport is usually the screen. In fisheye mode (Nightshade NG Professional only) the viewport is a square just containing the fisheye projection circle.
 Zero is center of viewport, 1 is the right edge of the viewport, -1 is the left edge of the viewport.

ypos
 REAL
Position of the text center in "viewport" coordinates. In perspective projection mode the viewport is usually the screen. In fisheye mode (Nightshade NG Professional only) the viewport is a square just containing the fisheye projection circle.

Zero is center of viewport, 1 is the top edge of the viewport, -1 is the bottom edge of the viewport.

v_align

- top
- center
- bottom
- baseline

Vertically align text relative to your desired position.

timerate

This command is used to adjust the how fast time elapses in the simulation. Units are seconds of simulation time per second of real time. A timerate of 1 is normal time, meaning that the simulation is running just as fast as real time.

```
timerate rate 100
wait duration 60
# Back to normal realtime rate of 1 second per second
timerate rate 1
```

action

- decrement
- increment

Decrement and increment generally adjust the simulation time rate by multiples of 10. Example steps: ... -1000 -100 -10 -1 0 1 10 100 1000 ...

pause

The simulation can be paused and resumed with 'pause'. If paused and resumed the simulation time rate will remain the same.

rate

REAL

Set simulation time rate in seconds of simulation time per second of real time.
video

Play and control video playback. Note that a video is stopped when the script that started it is stopped or finishes. Typically you will want the script to start the video, wait for some duration, and then call this command again with an "action stop" to stop the video. Some platforms may not support video playback.

```
video action play name tv filename ../media/landing.mp4 \
coordinate_system dome altitude 35 azimuth 45 scale 40 clone on \
video name tv alpha 1 duration 5
wait duration 50
```

action

- **clear**
 Drop all videos loaded by a script.

- **pause**
 Pause playback of a video.

- **play**
 Continue playing a paused video or if 'filename' is defined, start a new video.

- **resume**
 Continue playing a paused video.

- **stop**
 Halt video playback and unload the video.

alpha

- **FAADER**
 0 is transparent (default), 1 is opaque. Note that videos are drawn in the order they were loaded.

altitude

- **DEGREES**
 For positioning the center of the video in horizontal/dome coordinates. Zero is at the horizon, 90 is at the zenith.

azimuth

- **DEGREES**
 For positioning the center of the video in horizontal/dome coordinates. Please see page 6.

clone

- **ON_OFF**
 Whether to clone a video on opposite sides of the dome when using dome coordinates.

coordinate_system

- **COORDINATE_SYSTEM**
 What coordinate system to use when positioning the image. This can not be changed later.

dec

- **DECLINATION**
 DEGREES
Declination of the video center for "equatorial" and "j2000" coordinate systems.

duration

SECONDS
How long to take to complete the command.

lat

DEGREES
Latitude of the image center for "geocentric" coordinate system.

lon

DEGREES
Longitude of the image center for "geocentric" coordinate system.

filename

FILENAME
Path must be relative to script.

max_performance

ON_OFF
Render only this video for maximum playback performance. Anything else that would be visible will be black.

name

STRING
Unique name used to refer to the video in later calls to manipulate the video.

ra

DEGREES **RIGHT ASCENSION**
Right ascension of the video center for "equatorial" and "j2000" coordinate systems.

rotation

DEGREES
Absolute rotation about the center of the video, positive is clockwise when looking towards the center of the video.

scale

fill
In viewport coordinates, the video is scaled to completely cover the viewport while preserving the video aspect ratio. This means some of the video may be outside of the viewport. This argument is invalid for any other coordinate system.

REAL
How large to draw the video. In viewport coordinates, at 1 the video is scaled to fit maximized in the viewport without extending beyond the viewport edges. In other coordinate systems, this defines the maximum angular dimension of the video in degrees.

seek

SECONDS **RELATIVE SECONDS**
Jump to a new position in the video file. The brackets mean that this value can begin with an optional '+' or '-'. If it does the seek will be made relative to the current position. Otherwise the
position is measured from the beginning of the video. Can be used with the 'play' action to start somewhere besides the beginning of the video.

xpos

REAL
Position of the video center in "viewport" coordinates. In perspective projection mode the viewport is usually the screen. In fisheye mode (Nightshade NG Professional only) the viewport is a square just containing the fisheye projection circle.

Zero is center of viewport, 1 is the right edge of the viewport, -1 is the left edge of the viewport.

ypos

REAL
Position of the video center in "viewport" coordinates. In perspective projection mode the viewport is usually the screen. In fisheye mode (Nightshade Professional only) the viewport is a square just containing the fisheye projection circle.

Zero is center of viewport, 1 is the top edge of the viewport, -1 is the bottom edge of the viewport.

wait

This is a very important command, because most of the time in a script you will be waiting. Without wait commands everything would happen so quickly that you would not see or hear much of anything. Note that commands can sometimes take a bit of time to complete, such as loading a large image, and this can vary by system. If timing is critical, such as when synchronizing with a soundtrack, load your assets before starting the audio track.

```
wait duration 5  # Wait 5 seconds before executing next command
wait until 60 # Wait until 1 minute after the beginning of the script
```

duration

SECONDS
SECONDS can be fractional. How long to wait after the last command before running the next command.

until

```
[[INTEGER:]INTEGER:]SECONDS  ([[HOURS:]MINUTES:]SECONDS )
```
Wait to proceed with the next command until the script has run for this much time since being started. **SECONDS** are required, HOURS are not required, and MINUTES are only required if HOURS are used.

```
wait until 3:59 # Wait until three minutes and 59 seconds
wait until 15.6 # Wait until 15.6 seconds into the script
```
zoom

This command allows you to change your field of view (fov). This is not the same thing as moving closer to an object, such as with the flyto command. With the zoom command you do not move, but instead enlarge (or shrink) your view like you have a powerful adjustable telescope.

```plaintext
select planet Jupiter
zoom auto in
wait duration 15
zoom auto initial
```

auto

in

When using auto zoom to zoom in, the currently selected object will be tracked and the field of view (fov) will be adjusted to show a system view of satellites of the object. If there are no satellites or the fov is smaller than the system view already, the fov will shrink to enlarge a view of just the object itself.

initial

Returns to configured initial fov and if landed, returns to initial view direction.

out

When using auto zoom to zoom out, the field of view will be adjusted to show a body view if zoomed in further already. Otherwise, if zoomed in further than a system view of satellites of the object (if there is one) then that will be shown on a next call, otherwise fov returns to the default. If called when at the satellite view, fov is returned to the default. When returning to default fov and in landed mode then the initial view direction is also returned to the default.

fov

DEGREES

Change the current field of view, in degrees

duration

SECONDS

manual

in

When using manual zoom to zoom in, the currently selected object will be tracked and the field of view (fov) will be reduced by one half. In other words magnification will be doubled.

out

When using manual zoom to zoom out, the fov will be doubled. In other words magnification will be reduced by one half. When the base fov is reached and in landed mode, the view direction will be reset to default.